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Abstract 
A multispecies, age-structured spatial model called EDOM is developed and used to 
evaluate impacts of multiple fishing fleets and marine protected areas on long term 
(equilibrium) fishery economic performance, catch, and abundance.  Populations and 
fishing are represented on a grid of spatial cells, with linkage among cells due to larval 
and adult dispersal and inclusion of multiple cells in the home ranges of fish that are 
resident in or home to each cell for spawning.  Recruitment to each cell is assumed to 
depend on area of suitable juvenile rearing habitat and on compensatory survival 
responses after larval settlement.  Spatial fishing efforts are predicted using either gravity 
models or an economic optimization that distributes effort so as to maximize total profit 
for each fleet.  The model predicts that imposition of MPA networks designed from 
habitat criteria will result in improved economic performance only if fishing effort is sub-
optimally high outside reserves.  Absent such MPAs, it can still be optimum to close 
some source or nursery areas to fishing, if larval dispersal results in a source-sink 
metapopulation structure and/or fishing in important nursery areas causes high bycatch 
mortality of pre-recruit juveniles. 
 
Keywords: population dynamics, marine protected areas, economic optimization, spatial 
dynamics, EDOM model 
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Introduction 
Networks of marine protected areas are now widely advocated as a means to deal with 
overfishing and to protect sensitive habitats and species so as to maintain and restore 
marine biodiversity.  Equilibrium, spatial population dynamics models have been 
developed to predict the long term efficacy of such networks and to predict impacts on 
fishery values (Gerber et al. 2003; Gaylord et al. 2005; Botsford et al. 2004; Kaplan and 
Botsford 2005; Kaplan et al. 2006; Walters et al. 2007; Costello and Polasky 2008; 
Sanchirico and Wilen 2001).  As noted by Kaplan et al. (2006), practical application of 
such models to compare MPA proposals in stakeholder gaming and optimization settings 
requires that the models be computationally efficient, i.e. produce predicted population 
response patterns and fishery performance measures (catch, economic value) in no more 
than a few seconds for any policy proposal.   
 
Existing models have mainly taken a single-species approach, so as to demonstrate how 
species with different life-history characteristics (larval dispersal, adult movement, 
recruitment compensation, age-size dependent fecundity) are likely to benefit or not from 
different reserve size-spacing patterns.  These predictions have been made with either 
arbitrary fishing mortality patterns outside reserves, or patterns linked to abundance so as 
to predict effects like concentration of fishing near reserve boundaries.  The main 
findings are: (1) species with high adult dispersal or large home ranges are unlikely to 
benefit from small reserves, and (2) net benefits of reserves to fishing interests are 
unlikely to occur unless fishing mortality rates outside reserves are high enough to cause 
recruitment and/or growth overfishing (i.e. unless fisheries management outside reserves 
“fails”). 
 
Here we develop a model for guiding MPA design and evaluating MPA performance in 
settings where multiple fish species are harvested together, by multiple fishing gears or 
fleets (e.g. recreational, commercial), such that each species suffers fishing mortality 
rates (or at least bycatch and discard mortality rates) determined by fishing efforts that 
are distributed in relation to the overall abundance and value of all the species.  In order 
to efficiently compute equilibrium biomasses and egg production of the species over 
large numbers (hundreds) of spatial grid cells, we use Deriso-Schnute delay-difference 
models (Deriso, 1980; Schnute, 1987) to predict effects of fishing on size-age structure of 
the biomass.  Larval dispersal and compensatory juvenile survival after larval settlement 
are modeled with relationships similar to those proposed by Kaplan et al. (2006) and 
Walters et al. (2007).  We think of the spawning biomass on each model spatial cell as 
the biomass of mature individuals that home to the cell for spawning, and we represent 
both diffusive (irreversible) movement of fish among such homing cells and also “home 
range” movements of individuals away from the spawning cell to other cells in 
conjunction with feeding activities and seasonal migration patterns.  We allow model 
users to set arbitrary fishing effort patterns, to predict effort patterns using gravity (logit 
choice) models, or to distribute efforts so as to maximize an overall economic profit 
criterion.  The optimized effort distributions provide “least cost” assessments of the 
impact of arbitrary MPA networks on fishing interests, and we show that these least cost 
predictions are typically close to the predictions obtained with simple gravity models 
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where fishing efforts for each cell are predicted to be proportional to landed value of 
catch (summed over species) in that cell.  
 
We demonstrate application of the model to a region of the north central California coast, 
where rocky bottom species are harvested by sport and commercial fisheries and where 
the California Marine Life Protection Act (MLPA) has mandated development of an 
MPA network aimed primarily at protecting inshore habitats and the rich diversity of 
species that these habitats support.  Planning for MLPA has involved an intensive process 
of stakeholder involvement to develop multiple MPA network proposals, and screening 
of these proposals has mainly involved simple static criteria based on size-spacing 
guidelines intended to protect a high proportion of sedentary species, and on amounts of 
habitat protected.  Population models have been used to develop size-spacing guidelines 
(particularly variations on the Kaplan et al. 2006 approach), and a key objective in our 
model development work has been to provide stakeholders and decision makers with the 
capability to screen policies using models tailored more specifically to the study region 
than those used to develop overall size-spacing guidelines.  For the demonstration we 
divide the north central planning region into 243 spatial cells each 1km in north-south 
extent and extending from shore to the limit of California state jurisdiction, model 4 
valuable species (lingcod, Ophiodon elongatus;cabezon, Scorpaenichthys marmoratus; 
black rockfish, Sebastes melanops; and canary rockfish, Sebastes pinniger), and 2 fishing 
fleets (sport, commercial). 
 

Model assumptions 
The model attempts to predict equilibrium spawning biomasses Bis for s=1…ns species, 
over i=1…nc grid cells, subject to fishing by  g=1…ng fishing gears that exert fishing 
effort Eig in each grid cell.  To make the equations presented below easier to read, we 
suppress the s,g subscripts except where necessary, e.g. we refer to Bis simply as Bi when 
it is obvious that we are referring to any species s. 

Representation of habitat spatial structure 
 
We assume that the set of spatial cells, each indexed by i, are arranged in an arbitrary 
pattern on an X-Y map coordinate system.  The center of each cell is at position Xi,Yi, so 
that the distance between the center of any two cells i,j is given by Dij=((Xi-X j)

2-(Y i-
Y j)

2)1/2.  A one-dimensional model (e.g. abundances near a transect running along a 
coastline) is created just by setting all Yi=0. 
 
Each cell is assumed to have an areal proportion His of suitable juvenile habitat; Hi may 
differ across the modeled species.  For example His might be the proportion of shallow 
hard-bottom habitat for a species whose juvenile nursery distribution is restricted to 
inshore reef or rocky habitats, and might be the total proportion of hard-bottom habitat 
for a species whose juveniles rear over a wider depth range. 
 
For case studies with the model on California’s north central coast planning region (a 
210km stretch of coastline from Point Arena to Pescadero just south of San Francisco), 
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we have defined the model cells by starting with a GIS raster map of 1x1km rasters, 
where each raster is assumed to be predominantly one of seven general habitat types 
(shallow rocky, deep rocky, shallow soft bottom, deep soft bottom, unknown shallow, 
etc.).  Each such raster is assigned a model cell number (i), and habitat areas for i (and 
geographic mean position Xi, Yi) are calculated by adding up the raster areas.  This 
approach makes it easy to assess effects of alternative spatial aggregation choices in 
defining the model cells; for example the raster data can be accumulated over 1km wide 
onshore-offshore strips, 2km wide strips, or arbitrarily shaped clusters of rasters.  We 
ended up with 243 model cells after accounting for shoreline curvature and one key 
offshore feature, the Farallon Islands off the mouth of San Francisco Bay. 
 
In more general GIS terminology, each model cell is defined as a spatial polygon, small 
enough to represent the smallest MPA size under consideration, and with polygon 
attributes being the proportions of habitat of different types.  The polygons should each 
have about the same total map area, and when shaped as strips should represent the most 
likely orientation of MPAs (e.g. as strips running horizontally on the map from shore to 
the edge of management jurisdiction).  This makes it easy to program a model user 
interface so that users can simply mouse click at any point on the map, and have the 
corresponding model cell (e.g. strip) be designated as in an MPA or not (closed or open 
to fishing). 

Delay-difference approximation for exploitable and spawning 
biomass 
 
To apply eq. (1), we need to predict the average or equilibrium biomasses Bi.  This can be 
done efficiently, while preserving such key population dynamics relationships as high 
fecundity of older fish, by using the Deriso-Schnute delay difference model.  Suppose in 
an age-structured population that all fish aged k and older have equal annual survival rate 
St (including effects of harvest), and a weight-age relationship that can be approximated 
by the Ford-Brody growth model wa+1=α+ρwa (this model is typically very good for 
k>2).  Then Deriso and Schnute have shown that total age k and older biomass Bt and 
numbers Nt are given exactly by the difference equations 
 Bt=St[αNt-1+ρBt-1]+wkRt     (1a) 
 Nt=StNt-1+Rt       (1b). 
Suppose that St is held constant in cell i at St=Si, and that age-k recruitment Rt in cell i 
varies around an average or equilibrium value Ri.  Then (1b) implies equilibrium 
Ni=Ri/(1-Si); substituting this for N in (1a) and solving for equilibrium Bi in cell i results 
in 
 Bi=[SiαRi/(1-Si)+wkRi]/(1-ρSi)    (2). 
Immigration and emigration can be included in the prediction of Bi simply by (1) adding 
predicted biomass immigration rate Ii into the numerator of (2), (2) including proportional 
emigration rate ei as a loss term in calculation of Si (Si=Snat(1-Ui)(1-ei), where Snat=e-M is 
natural survival rate and Ui is annual exploitation rate in cell i and harvest is assumed to 
be seasonal so that Ui=(1-e-Fi), and (3) adjusting the equilibrium equation for Ni for 
immigration using Ni=(Ri+NIi/(1-Si) where immigrating numbers NIi are approximated 
as Ii/wI using an estimate wI of the average body weight of dispersing fish.  Total fishing 
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mortality rate Fi is calculated as the sum over gears of qgEig, where qg is a species-specific 
catchability.  When there is home range movement over multiple spatial cells, Fi is 
calculated as a sum over the cells used by Bi of proportions of time spent in each cell 
times the qE sum over gears for that use cell. 
 
Ri is presumably a function of total larval settlement Li in cell i, and there is most likely 
to be compensatory change in post-settlement juvenile survival rate.  We usually expect 
the net recruitment relationship to be of Beverton-Holt form: 
 Ri=aiLi/(1+biLi)      (3). 
Maximum post-settlement survival rate to age k, ai, may well be similar among cells, but 
we expect the carrying capacity parameter bi to vary with relative area of suitable 
juvenile habitat Hi.  To parameterize eq. (5), we specify a base recruitment rate Roi that is 
proportional to nursery habitat area Hi in cell i, and an initial estimate Lo of mean (over 
cells, weighted by unfished biomasses) larval settlement that would be expected when all 
the Bi are at unfished equilibrium Boi.  We then assume that recruitment rates per unit 
nursery habitat area Ri/Hi vary according to a species (but not cell) dependent relationship 
with parameters a*,b*, and c*: 
 Ri/Hi=a*(LiHi

c*/Hi)/[1+b*(L iHi
c*/Hi)]    (4). 

Here, LiHi
c*/Hi represents effective larval settlement per unit nursery area, where c*=0 

implies that all larvae settling on cell i are able to find and concentrate on Hi, while c*=1 
implies that only the proportion Hi of all larvae settling on i actually settle successfully on 
that suitable nursery habitat (note that using a power function Hc in this setting only 
makes sense when H is scaled so as to vary between 0.0 and 1.0, i.e. is scaled as a 
proportion of total cell area that is usable)..  Then a* and b* are calculated from an 
assumed Goodyear compensation ratio K and assumed scaling of R such that R/H=1 
when H=1, as a*=K/Lo and b*=(K-1)/Lo.  Finally, the cell-specific ai and bi are calculated 
from a*, b*, and c* by scaling back from R/H to Ri, as ai=a*Hi

c* and bi=b*Hi
c*/Hi. 

 
Larval settlement Li to each cell is found as a sum of proportional contributions from the 
larval production by every cell, i.e.  
 Li=ΣjBjSij       (5) 
Here, Sij is the larval settlement on cell i per unit spawning biomass in cell j.  In principle 
Sij should depend on ocean currents, larval behavior, pelagic larval duration, etc.; lacking 
some of these data we assume here that the Sij are calculated with a normal probability 
kernel with species-specific larval movement distance (Dij) standard deviation.  Note that 
we need not specify absolute fecundity or larval survival, since effects of these are 
represented in the stock-recruit ai parameter.  Note further that assuming larval 
production from each cell to be proportional to Bj implies strong effects of body weight 
on fecundity.  This formulation can be readily extended to cases where larval settlement 
from each cell i is displaced from cell i in some systematic pattern, due for example to 
advective alongshore transport and differential larval retention patterns, so as to create 
source-sink patterns.  Such extension requires specifying mean locations XLi and YLi for 
larval settlement from each i, then computing settlement on cells j using distances from 
these mean settlement positions.  
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Adult dispersal is modeled as a two-step diffusive process.  First, a proportion ei of age k 
and older fish are assumed to move each year.  Of the ejBj dispersing biomass from cell j, 
proportions SAij (where SAjj=0) are assumed to resettle on other cells i to form the total 
immigration rate Ii. The SAij values are calculated with a normal probability kernel with 
species-specific standard deviation, using the distances Dij. 
 
We also allow the possibility of fish having home ranges larger than one cell, so that 
movement within home ranges exposes the biomss Bi of fish whose home range is 
centered in cell i to fishing mortality in surrounding cells j.  To do this, we modify the 
calculation of Ui as noted above,.   If HEij is an estimate of the proportion of time that 
fish with home range center in cell i spend in surrounding cells j, Fi is calculated as 
ΣjΣgqsgEig  We assume that the HEij decline in a normally distributed pattern with 
distances Dij.  This is equivaluent to calculating an effective fishable biomass B*i for 
each cell, where B* is a sum over surrounding cells j of contributions HEjiBj of fish with 
home ranges centered in those surrounding cells. 

Finding Maximum Equilibrium Economic Value 
 
Total equilibrium profit Vg for gear g over the mosaic of areas i=1…nc is assumed to vary 
as 

]Ec*B)E(UP[V igigis
i

igs
s

sg −=∑ ∑        (6) 

where Eig is fishing effort on area i, Us(E) is exploitation rate by gear g on species s as a 
function of effort, B*is is equilibrium biomass exposed to fishing on area i (a function of 
Uis and of dispersal from other sites), Ps is the landed price per biomass of species s 
(assumed independent of gear type, and scaled up from model biomass per habitat area to 
total biomass estimated from stock assessment models) and cig is cost per E of fishing.  
To represent competing effects of multiple gears fishing in the same cell, Us(Eig) is 
calculated as 
 Us(Eig)=qsgEig/Fis(1-e-Fis)       (7) 
where Fis is the total fishing rate on species s in cell i: Fis=ΣgqsgEig. 
 
It is instructive to examine how Vg varies with Eig in the case where the optimum E’s are 
all expected to be low enough so that Usg for every s and g is approximately equal to just 
qsgEig.  In that case, Vg can be approximated as just Vg=ΣiEigB** ig-ΣicigEig, where B**ig is 
the weighted sum over species of prices times biomasses times catchabilities: 
B** ig=ΣsP=B*isqsg. . Differentiating this approximation for Vg with respect to Eig and 
setting the resulting derivative to zero implies that the Eig that maximize Vg will satisfy 
(up to zero constraints on Ei) 

igig

ij
igjgjgigig

ig E/**B

E/**BEc**B

E
∂∂

∂∂+−
−=

∑
≠     (8) 

The denominator of this expression represents the effect of fishing in area i on 
abundances in area i, and the sum in the numerator represents effect of fishing in area i on 
abundances and catches in other areas j (not including i).  Note that terms of the form 
∂B**/ ∂E generally have negative sign. 
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Eq. (8) implies a very interesting pattern of optimum Eig when there is a subset of areas 
that act as “sources” of recruitment and dispersal to other “sink” areas (that do not send 
recruits and dispersers to the source areas), i.e. the source areas are i’s for which the 
terms ∂B** jg/∂Eig in the denominator of (8) are large negative for sink areas j (fishing in i 
causes loss of recruits to those sink areas).  In this case the optimum fishing pattern will 
involve Eig=0 for the source areas, i.e. the source areas should be closed to fishing so as 
to act as “seed sources” for the other areas.  We have been seeing this seed-source closure 
pattern in mosaic closure optimizations for tuna (R. Ahrens, University of B.C. Fisheries 
Centre, pers. comm.): the optimization wants to close areas like the western Pacific and 
western Indian, where there are high recruitment rates and from which tuna grow and 
disperse.  A worrisome point is that absent spatial regulation, the high-abundance source 
areas tend to attract the most fishing, i.e. site choice by fishermen tends to produce 
exactly the opposite spatial pattern of fishing from that which would maximize overall 
profit V. 
 
Another useful result from examining eq. (8) is that it predicts optimal efforts to be 
approximately proportional to fish availability as represented by B**ig, provided 
differences among cells in the denominator sum of sensitivities to fishing in cell i  are 
ignored.  This means that a simple gravity model, where Eig is predicted as 
Eig=ETgB** ig/ΣjB** jg and ETg is total effort summed over all cells, can be used as both a 
predictor of how fishing effort will be distributed given myopic choices by fishers to 
concentrate where fish are most abundant, and also as a starting point in numerical 
searches for optimal effort distributions.  In the California case example, we have found 
the gravity model effort predictions to be quite close to the efforts found by numerical 
optimization of Vg, except in cases where source-sink or sensitive species concentrations 
imply a need to prevent fishing in some cells.  
 
There are two approaches to finding the Ei that maximize V.  One is simply brute force, 
using some general constrained nonlinear search procedure such as the GRG2 algorithm 
of Solver in Excel.  The second is to apply a fixed-point method to the approximation eq. 
(8): starting with initial equilibrium B**ig for Eig=Eoig, compute the partial derivatives 
∂B**/ ∂E, then compute E1ig from eq. (3) and set all the Eig to max{0,WE1ig+.(1-W)Eoig)} 
for some suitable relaxation weight W (we obtained stable results with W=0.1 to 0.2).  
Repeat this iteration until the Eig stop changing. 
 
An alternative reference fishing pattern for MPA planning is to compute the Ei at 
bionomic equilibrium, by allocating total effort using a gravity model then increasing that 
total until Vg=0 (i.e., until profits are dissipated).  This equilibrium effort distribution 
presumably represents the worst case overfishing that could be economically sustained, 
possibly involving substantial loss of spatial stock structure so that the remaining Ei are 
concentrated in relatively few spatial cells. 
 
The gravity and optimization models have an important implication for management 
planning that involves limitation of total fishing effort ETg, namely that the ET needed to 
generate a given total fishing mortality rate F can be much lower when fish are patchily 
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distributed than would be predicted by assuming even distribution of fishing over patches 
or spatial cells.  The models predict effort on cell i to be approximately 
Eig=ETgB** ig/ΣB** ig; assuming catch on each cell is approximately proportional to Eig, F 
for each cell varies as qEig and total F over all cells varies as F=qEigB**ig/ 
ΣB** ig=qETgB** ig

2/ (ΣB** ig)
2.  This relationship can be expressed in terms of the 

variance in B** among cells, σ2B** , as  
  F=q(ETg/nc)[1+CV2

B** ]     (9) 
Here, ETg/nc is the mean effort per cell, and CVB**  is the coefficient of variation of B** 
among cells, i.e. σ2B**  divided by the mean B** per cell.  This equation predicts that 
overall F felt by the biomass complex B** will be inflated by the factor 1+CV2 from the 
F predicted by assuming even distribution of effort over cells, or equivalently that ETg 
needs to be reduced by the factor 1/(1+CV2) in order to meet a given F target that would 
be predicted to occur at ETg=Fnc/q if effort were evenly distributed. 
 
The fishing effort pattern that maximizes eq. (6) may well involve overfishing one or 
more of the species.  If such solutions are considered unacceptable, and a maximum 
tolerable fishing mortality rate FMs is specified for each species s, the maximization can 
be “constrained” to prevent Fs for each species (Fs=total catch/total biomass for species s) 
by subtracting a penalty term FP from Vg where 
 FP=p1Σs(Fs/FMs)

p2     (10). 
Here, the penalty weight p1 is set to a small enough value (e.g. 0.00001) to avoid 
instability in the numerical optimization search, and the penalty power parameter p2 is set 
to a large value (e.g. 10.0).  Including such terms in the spatial effort optimization 
typically results in a “mosaic closure” pattern where spatial cells having high abundance 
of species s that have low FMs are closed to fishing (Walters and Martell 2004). 

Software implementation 
We developed a Visual Basic application called EDOM (Equilibrium Delay-difference 
Optimization Model) to implement the calculations described above. The EDOM user 
interface makes it easy for model users (scientists, stakeholders) to check sensitivity of 
the model predictions to parameter changes, quickly enter new MPA options by clicking 
on map displays of the study region, and compare MPA options in terms of economic 
performance and expected equilibrium abundance patterns.   
 
EDOM can compute and display equilibrium biomasses over nc=243 cells for ns=4 
species and ng=2 gears in about 0.5 sec on fast notebook computers available as of 2007, 
so model users see apparently instantaneous answers to simpler “what if” questions about 
parameter sensitivity and impact of altering MPA boundaries and locations.  Effort 
optimizations for 11 MPA policy alternatives, to generate maximized economic 
performance and biomass-catch indicator comparisons among the options, with a few 
minutes of computer time. 
 
The EDOM application, with sample data files for the California MLPA case study, is 
freely available by email from the senior author.  System requirements are Win XP, 1mb 
RAM, and 2mb disc space.  EDOM runs on some computers with Win Vista.   

D R A F T   D R A F T   D R A F T   D R A F T January 8, 2008 MLPA SAT meeting



Case study: California Marine Life Protection Act 
 
We evaluated 10 MPA network proposals that have developed to date for the north 
central coast planning region of California (Fig. 1).  These proposals were developed by 
stakeholders and California Department of Fish and Game staff.  They differ widely in 
MPA sizes and locations, and in total area of hard bottom habitats protected.  The most 
extreme proposals (C, Jade A) would close over half the hard bottom area to all 
(recreational and commercial) bottom fishing. 
 
 
Using population dynamics parameter estimates (Table 1) from Pacific Fisheries 
Management Council stock assessment reports and expert judgment of scientists involved 
in MLPA planning, EDOM predicts equilibrium spawning abundance patterns along the 
central California coast (Fig. 2) that are very similar to predictions from previous 
modeling exercises (Kaplan et al. 2006, Walters et al. 2007).  Spawning biomasses (Bis) 
are predicted to be highest in spatial cells having higher proportions of suitable juvenile 
nursery area (hard bottom), and harvestable biomasses (B*ig) are predicted to be more 
widespread for species like lingcod that are assumed to have larger home ranges.   
 
Predicted biomass distribution patterns (Bi) like Fig. 2 are obviously very sensitive to 
estimates of the distribution of nursery habitat and to assumed recruitment compensation 
ratios K, particularly since such ratios determine whether areas of low natural larval 
settlement (and/or high fishery impact on larval production) are still likely to achieve 
normal recruitments per habitat area.  Predicted distributions are also very sensitive to 
assumptions about c*, the parameter controlling whether settling larvae are able to 
successfully concentrate on areas of suitable habitat.  But they are quite insensitive to the 
body growth parameters and related fishery impacts on mean body size and fecundity, 
except when recruitment compensation ratios are assumed to be very low (e.g. K<5.0).  
And surprisingly, they are relatively insensitive to assumptions about larval transport 
distances except in scenarios where very high fishing mortality rates are assumed for 
cells not closed to fishing (when there is almost no spawning biomass outside reserves, 
larval connectivity among reserves along with recruitment compensation determines 
whether recruitment and spawning biomass accumulation can occur successfully within 
reserves).  For high fishing effort scenarios when MPAs are present, predicted biomass 
patterns are also sensitive to assumed home range sizes and adult dispersal rates 
(spawning biomasses cannot build up inside small reserves for species with large home 
ranges and/or high dispersal rates). 
 
 
If fishing effort outside MPAs is assumed to be high (no effective regulation of total 
fishing effort, a “management fails” scenario), predicted biomass response to imposition 
of MPAs is greatest for species with weak recruitment compensation (small Goodyear 
compensation ration K), small home ranges, and wide larval dispersal.  Progressively 
more restrictive MPA policies (Fig. 1) can lead in this fishing scenario to increases in 
catch and overall net economic value for all fisheries (Fig. 3a), i.e. a win-win option for 
biodiversity conservation and fishing interests. 
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However, the current situation in California is that fishing efforts for bottom fish have 
been radically reduced through commercial license retirements and sport fishing 
regulations including closed seasons.  If this low effort scenario persists for the long term, 
predicted responses to more restrictive MPA proposals (Fig. 3b) involve a pure tradeoff 
relationship between abundance (biomass) versus catch and net economic value.  This 
tradeoff relationship is predicted to be much less severe if efforts outside MPAs are 
regulated so as to be near those predicted by maximizing net economic value (Fig. 3c), 
i.e. effective management of fishing effort could considerably reduce the negative effect 
of MPAs on fishery performance.  With suboptimally low fishing efforts in the future, 
fishing interests would lose up to 50% of net economic value under the most restrictive 
MPA policies, but it should be possible to reduce this loss to 20% or less through optimal 
effort management. 
 
When larval dispersal is assumed to follow a random walk pattern (normal distribution of 
larval settlement along the coast both north and south from each larval source cell), 
Fishing effort distributions predicted using both gravity models and optimization are very 
similar (Fig. 4).  Fishing is predicted to be concentrated in areas of high B* and along the 
boundaries of MPAs.  However, the optimization tends to reduce fishing in important 
nursery or larval source areas for less mobile stocks that are sensitive to overfishing (e.g. 
canary rockfish), when more productive and mobile species (e.g. lingcod) can still be 
taken outside such areas, i.e. the optimization “anticipates” some economic benefit for 
local protection of sensitive species that would be invisible to myopic fishers selecting 
fishing areas based solely on local abundance.  This tendency for the optimization to 
protect some areas becomes much stronger when larval production rates are arbitrarily 
reduced from most cells (the cells are set to be “sinks”), but are left high in some 
“source” cells; in this case the optimization calls for complete closure of the source cells 
to fishing even when no cells are pre-designated to be in MPAs.  We have no idea 
whether such a source-sink structure does occur along the California coast, but sensitivity 
of the optimization results to assuming such structure indicates that examination of larval 
drift and settlement patterns using more detailed hydrodynamic transport and larval 
behavior models should be a high priority for future model development in the case 
region. 
 
We calculated total profits from commercial fishing (Vg of eq. 6) for various MPA 
options and assumptions about whether optimum fishing patterns are followed in the 
future (Fig. 5), using reference fish prices of $1.00/kg for all species and a location 
independent fishing cost cg scaled so as to give cost per effort equal to 50% of income per 
effort at abundances calculated from recent stock assessments (Scholz et al. 2006; Wilen 
and Abbott, 2006).  If fishing efforts remain low into the future, we predict that 
equilibrium total profits will drop still further under all MPA plans if effort now 
occurring in MPAs is simply lost when MPAs are imposed (Fig. 5a).  If total effort now 
occurring is redistributed to remaining open areas (gravity model or by optimization) 
following imposition of MPAs, loss in economic value will still be reduced somewhat 
(Fig. 5b).  If future efforts are allowed to rebuild to levels predicted to be optimum by 
maximizing eq. 6, losses associated with the more restrictive MPA options could be 
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further reduced (Fig. 5c).  For the more restrictive MPA options, loss of 50% of the 
productive hard bottom fishing area results in corresponding 50% loss in economic value 
under the Fig. 5a effort scenario, but as little as 20% of economic value if efforts are 
allowed to rebuild to optimum levels.  
 
A very interesting result is obtained when efforts are first optimized for commercial 
fishing as in Fig. 5c, but then net values are calculated for recreational fishing under the 
various MPA options.  In this case, higher optimized “economic” net values for 
recreational fishing are obtained when moderate area is protected in MPAs (Fig. 6).  That 
is, recreational fishing interests actually stand to benefit from MPAs if it is known that 
commercial fishing efforts outside MPAs will be relatively high but not responsive to 
increases in abundance and spillover caused by the MPAs.   
 
We ran a few optimization trials where allowable fishing mortality rates FMs were 
arbitrarily set to very low values (e.g. 0.02) for one or another species s.  The results from 
those trials were very similar to the mosaic closure patterns reported by Walters and 
Martell (2004). When FMs is set low for a sedentary species (e.g. cabezon) , the optimum 
effort pattern involves closing all spatial cells where that species is concentrated.  When 
FMs is set low for a species with large home range (e.g. lingcod), the optimum pattern is 
reversed, and involves closing many cells to which the species moves while 
concentrating fishing effort in the remaining cells where sedentary species are most 
abundant. 
 
The California MLPA calls for an adaptive management process to evaluate performance 
and possibly adjust MPAs over the long term.  Monitoring for adaptive management will 
presumably include monitoring of abundances inside MPAs with outside reference areas, 
hopefully in a before-after (BACI) “experimental” design.  Most of the MPA proposals 
involve a strong “selection bias” toward protecting areas with relatively more hard-
bottom habitat.  Comparisons of predicted equilibrium biomasses averaged over cells 
inside and outside MPAs “before” (at equilibrium with respect to current fishing effort) 
and after MPA implementation (Fig. 5) indicate that a monitoring program would 
immediately (before time for recovery) see almost double (1.7 times) the mean total 
spawning biomass from density sampling inside MPAs than outside, i.e. simple inside-
outside comparisons would indicate that MPAs had been successful at increasing 
abundance, even before such increase could have occurred.  At long term equilibrium, 
total spawning densities inside MPAs are predicted for most policy options to be 3-5 
times the mean densities outside MPAS, a difference that should be easily detectable with 
monitoring methods such as visual diver and ROV counts and test fishing catch rates.  
Predicted biomass ratios both before time for recovery to have occurred and after are well 
within the range of inside-outside and before-after biomass ratios reported by Halpern 
(2003), warning that many of the MPA “effects” that he reported could also be due to 
selection bias rather than before-after changes. 

Discussion 
The case study results presented above are similar to those obtained with single-species 
models that make the same general assumptions about dependence of recruitment on 
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spatial patterns of larval dispersal and nursery habitat area, e.g. Kaplan et al. (2005, 2006) 
and Walters et al. (2007).  They are also qualitatively similar to predictions that we have 
obtained with a much more complex Ecospace model (Walters et al. 1999, 2008) that 
includes both age-structured population dynamics and trophic interaction effects, 
constructed from an Ecopath model of the California current ecosystem developed by 
Field et al. (2005).  When habitats and dispersal are roughly homogeneous, all of these 
models agree that MPA networks are unlikely to generate net increase in fisheries.  
However, our model reveals that if appropriately designed, MPA networks may be 
capable of enhancing fisheries when: (1) fishing effort cannot be controlled such that 
there is a high risk of overfishing in unprotected areas, (2) there is some source-sink 
structure in larval dispersal such that protection of key source areas would increase 
recruitment to substantial sink areas of nursery habitat, or (3) relatively immobile and 
unproductive species are concentrated in areas that would attract unacceptably high 
fishing efforts for various reasons (e.g. low fishing costs, high abundances of more 
productive and mobile species).  In such cases, spatial dynamic models such as EDOM 
are critical for efficient reserve siting. 
 
There has been much discussion among scientists involved in the California MLPA case 
about the importance of spacing reserves so as to provide for maintenance of 
metapopulation structure through “connectivity” among reserves by larval dispersal, and 
larval dispersal distances have been treated as a critical uncertainty for model predictions.  
In fact, such larval connectivity is much less important (for predictions about 
maintenance of metapopulation structure) when severe overfishing is expected outside 
reserves than is compensatory survival response after larval settlement (recruitment K 
and c* parameters).  Absent strong compensatory responses, the models predict that large 
overall decreases in larval production (loss of larval production from spawning outside 
reserves) will result in inadequate recruitment within reserves to maintain natural 
abundance levels in those reserves, even if fish within the reserves exhibit natural age-
size structure in terms of proportions of older, more fecund fish.  Because of this 
compensation issue, the models also warn against using simplistic guidelines based on 
single species assessments about total area that should be protected, e.g. “if assessment 
models say that spawning biomass should be maintained at 20% or more of unfished 
levels, at least 20% of the total area should be protected so as to have natural spawning 
biomass”. 
 
Comparison of optimized to myopic (gravity model) effort distributions when no MPAs 
are present (Fig. 4 a) suggests that seasonal time-area closures should be considered as an 
alternative to no-take reserves, in cases where such closures can effectively reduce annual 
fishing mortality in areas where sensitive (to overfishing) species are concentrated and 
where one or more such sensitive species have relatively small home ranges.  This 
finding depends on there being at least some negative correlation between productivity 
and mobility, i.e. on there being opportunity to harvest more productive species at higher 
rates in parts of their home ranges where it is not beneficial to have seasonal closures; 
such negative correlations are probably common, due to obvious major distinctions like 
sedentary rockfishes being caught in fisheries that also take more productive and mobile 
species like cods and lingcod.  The economic gains from spatial effort reduction measures 
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are predicted to be relatively minor for the species mix included in the California MLPA 
case study (on order 5-10% increase in net economic value by moving from gravity 
model to optimized efforts), but could be considerably larger in other regions. 
 
It is not clear that equilibrium models like EDOM should be the only type of model used 
to compare MPA network options in terms of population dynamics performance.  Such 
models can certainly provide more realistic predictions about long term performance than 
simplistic calculations based on habitat areas protected or guidelines about overall 
percentage of area that ought to be protected, by avoiding pitfalls of reasoning like those 
mentioned in the previous paragraph and by forcing explicit consideration of some 
parameters that determine population responses.  But equilibrium analysis ignores at least 
two really important dynamic issues: (1) the possibility of multiple equilibria in 
population size, such that depressed populations might be “trapped” at low equilibria by 
mechanisms such as depensatory predation and fishing mortality that are ignored in 
simple compensatory recruitment models; and (2) time transients in benefits and costs to 
economic stakeholders, which would be represented in dynamic models by calculating 
“net present value” as a discounted sum over time of net benefits.  Point (2) is 
particularly worrisome for cases like California rockfish, where current populations of 
some species are very low and where recovery may take several decades and involve 
sporadic recruitment variation related to oceanographic factors.  Why for example should 
a California sportfisher support some MPA or effort reduction plan that will take away 
his fishing opportunities, when the only comfort we can offer is that his/her grandchildren 
will see improved fishing?  If we present only the equilibrium analysis, we may mislead 
that sportfisher by not warning him/her to think about how long it will take for benefits to 
accrue, and to whom those benefits will go.  It is easy for scientists and conservationists 
to advocate use of evaluation models that take only a long view, both for computational 
convenience and because we are not the people who will suffer the short term losses. 
 
We have resorted to equilibrium calculations for computational convenience (which is 
particularly critical when optimizing).  But once an MPA network is defined, a fully 
functional age structured dynamic model could easily coupled to EDOM to facilitate 
dynamic predictions.  In addition to illuminating dynamic tradeoffs, this would assist in 
experimental design for monitoring and evaluation. 
 
Another potentially serious weakness in the EDOM assumptions is that we ignore the 
possibility of species-selective fishing practices aimed at meeting different fishing 
mortality rate goals.  When effort is assumed to take all species with equal (or at least 
constant) species-specific catchabilities, it is typical for the effort pattern that maximizes 
net total value to cause overfishing on at least one stock that has lower Fmsy than the 
others, unless that “weak” stock is a very large proportion of total harvestable biomass.  
Likewise, the best overall effort pattern forgoes some yield from more productive species 
(F<Fmsy, e.g. for lingcod in the California case).  Further, we know that at least some 
species like cabezon, can be taken quite selectively through targeted fishing.  One option 
for dealing with such possibilities (need to protect less productive stocks, opportunity to 
selectively harvest others) is simply to create more gear types representing the selective 
fisheries, and to optimize those independently from the less selective gear types.  At the 
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extreme, we could use the common fisheries assessment practice of simply optimizing 
effort for each species separately, without pretending to know how such effort patterns 
might be achieved by management regulations.  Compared to these alternatives, EDOM 
provides a most conservative (lowest) assessment of potential net economic value, since 
any of the alternatives would reduce or entirely avoid overfishing of any species. 
 
While we can easily identify various ways to make the model more realistic and credible 
from an ecological and economic perspective, it is not clear that much will be gained by 
doing so.  The main value of the model is for making broad comparisons across 
alternative protected area network proposals, and those comparisons are apparently quite 
insensitive to details of model formulation and parameter values.  Simply by exposing 
future fisheries management regimes under which win-win versus abundance-catch 
tradeoff would occur, the model emphasizes that responsible MPA planning cannot be 
done with simplistic assumptions about future fisheries management.  By providing a 
timely way to assess how both ecological and economic performance indicators are likely 
to change when MPAs are added or modified, the software should provide stakeholders 
charged with designing and recommending network proposals an open, objective way to 
move toward proposals that are acceptable to all interest groups. 
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Tables 
 
Table 1.  Population dynamics parameter estimates used in case study demonstration of 

the EDOM model for a region of the California coast.  Estimates compiled from 
stock assessment reports of the Pacific Fisheries Management Council 
(http://www.pcouncil.org/groundfish/gfsafe0406/gfsafe0406.html), expert 
judgments by scientists, and stock reduction analyses conducted by the senior 
author using PFMC catch and trend data and the SRA modeling approach 
recommended by Walters et al. (2006). 

 
 Lingcod Cabezon Black 

Rockfish 
Canary 
Rockfish 

Annual survival rate (e-M, yr-1)) 0.84 0.78 0.79 0.94 
Body growth intercept (a, kg) 1.17 0.42 0.19 0.25 
Body growth slope ® 0.95 0.93 0.90 0.96 
Weight at maturity (wk, kg) 2.23 0.57 0.74 0.28 
Recruitment compensation ratio (K) 10.00 5.00 2.00 20.00 
Mean larval dispersal distrance (km) 10.00 45.00 45.00 45.00 
Adult emigration rate (e, yr-1) 0.01 0.01 0.01 0.02 
Mean adult dispersal distance (km) 5.00 5.00 5.00 10.00 
Adult home range radius (km) 10.00 0.50 7.00 3.00 
Unfished spawning biomass (tmt) 30.00 3.50 24.00 80.00 
Ratio of current to unfished 
biomass 

0.20 0.30 0.30 0.10 
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Figure captions 
Figure 1.  Spatial locations and sizes of MPAs (white) for 10 network proposals 

developed for the north central coast of California..  Map rasters extend from 
shore to the offshore limit of California state jurisdiction.  Number next to each 
proposal name (A, B, etc.) is rough percentage of hard bottom area included in 
MPAs.  Reference locations are: PA-Point Arena, SP-Salt Point, BB-Bodega Bay, 
PR-Point Reyes, SF-mouth of San Franciso Bay, HM-Halfmoon Bay, FA-
Farallon islands.  Larger areas of hard bottom shown as dots. 

Figure 2.  Spatial distributions of spawning biomass, harvestable biomass, and larval 
settlement predicted by EDOM for four bottomfish species that are important in 
the central California nearshore fisheries.  X axis of the graphs is spatial position 
along the coast from Pt. Arena in the north to Pescadero in the south, with cells 
representing the offshore Farallon islands shown as the last 20 X positions (see 
locations in Fig. 1, e.g. PA, SF).  (a)-(c) show spawning biomass (B), vulnerable 
biomass (B*), and larval settlement (L) for no MPA option; (d)-(f) show these 
variables for MPA proposal C; panel (d) shows closed cells (black dots) for this 
proposal.  

Figure 3.  Predicted relationships for the north central California coast area between 
equilibrium biomasses of four indicator fish species and catches of those species, 
for three alternative assumptions about fishing outside MPAs.  a—low fishing 
efforts outside MPAs, so that more restrictive MPA proposals like C, Jade A 
cause little gain in biomass but large loss in catch; b—high (overfishing) efforts 
outside MPAs, so more restrictive proposals result in both higher biomass and 
higher catches (net benefit to fisheries of “spillover” from MPAs); c—efforts 
optimized outside of MPAs, for which MPAs cause a severe tradeoff between 
abundance and catch. 

Figure 4.  Differences between spatial effort patterns predicted with simple gravity 
models versus with optimization for overall net economic value. (a) no MPAs, (b) 
MPA proposal C.  Note that both models predict effort concentration in areas of 
high abundance, and along MPA boundaries; note also much higher efforts for 
cells open to fishing in the MPA proposal C case, and reduced efforts in the no 
MPA case in areas where less productive, less mobile species are concentrated. 

Figure 5.  Ratios of predicted mean biomass density per spatial cell, inside and outside of 
MPAs before and after enough time for biomass to reach equilibrium.   Long term 
ratios evaluated at optimum fishing effort pattern.  (a) ratios before enough time 
to reach equilibrium; high values indicate “selection bias” toward MPA placement 
in areas of higher abundance; (b) ratios after enough time to reach equilibrium.   
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4 
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